
s
it
a

C
e
s-
e
ter

the
For
s-
de
n

gy
es.
d

i-
to
m-

-
/O
at

ther
ch

rd
now
nd

ch-
he
he
en
ith-
e-
r

Cache Fusion: Extending Shared-Disk Clusters with Shared Caches

Tirthankar Lahiri, Vinay Srihari, Wilson Chan, Neil Macnaughton, Sashikanth Chandrasekaran

Oracle Corporation
{tirthankar.lahiri, vinay.srihari, wilson.chan, neil.macnaughton, sashikanth.chandrasekaran}@oracle.com
Abstract
Cache FusionTM is a fundamental component of
Oracle’s Real Application Cluster configuration,
a shared-cache clustered-database architecture
that transparently extends database applications
from single systems to multi-node shared-disk
clusters. In classic shared-disk implementations,
the disk is the medium for data sharing and data
blocks are shipped between nodes through disk
writes and reads under the arbitration of a distrib-
uted lock manager. Cache Fusion extends this
capability of a shared-disk architecture by allow-
ing nodes to share the contents of their volatile
buffer caches through the cluster interconnect.
Using Cache Fusion, data blocks are shipped
directly from one node to another using intercon-
nect messaging, eliminating the need for extra
disk I/Os to facilitate data sharing. Cache Fusion
thus greatly improves the performance and scal-
ability characteristics of shared-disk clusters
while continuing to preserve the availability ben-
efits of shared-disk architectures.

1. Introduction

A cluster is a group of independent servers that cooperate
as a single system. The key components of a cluster are the
constituent server nodes, the interconnect, and the disk
subsystem. The OracleReal Application Cluster(RAC)
architecture is a clustered database architecture running on

a shared-disk cluster, a form of cluster in which all node
have direct access to all disks. RAC is so called since
transparently allows any database application to run on
cluster without requiring any application changes. RA
allows for improvements in application performance sinc
the application is executed in parallel across multiple sy
tems, as well as improvements in availability, since th
application is available as long as at least one of the clus
nodes is alive.

In a classic shared-disk clustered database, the disk is
medium of data coherency across the cluster nodes.
instance, if a node requires a copy of a block that is pre
ently dirty in another node’s buffer cache, the second no
must first write the block to disk before the first node ca
read the block.

However, recent advances in cluster hardware technolo
merit a fresh approach to building clustered databas
Storage Area Networks (SAN) now provide sophisticate
mechanisms for disk connectivity, circumventing the lim
tations of directly attached disks by allowing each node
be connected to a much larger number of disks. For exa

ple, InfinibandSM[2] is an emerging standard for high-per
formance clusters, and by using the same protocol for I
and inter-node messaging allows cluster networks th
carry both data and cluster interconnect messages. O
high-performance commodity interconnect standards su
asVirtual Interface Architecture(VIA)[4] now allow ven-
dors to build high-performance clusters from standa
components. These advances mean that clusters are
becoming mainstream, capable of high data volumes a
high data-transfer bandwidths.

Cache Fusion exploits these advances in clustering te
nology by using the network rather than the disk as t
medium for data sharing between nodes. With the Cac
Fusion protocol, blocks can be shipped directly betwe
Oracle Instances through fast inter-node messaging, w
out requiring expensive disk I/O. Oracle instances ther
fore directly share the contents of their volatile buffe
caches, resulting in ashared-cacheclustered database
architecture.

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or dis-
tributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by per-
mission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.
Proceedings of the 27th VLDB Conference,
Roma, Italy 2001

l be

n
est
pda-
S

he
r

ce
-
w

ce
ng,
re

s of

on
ing
ed

its

s
s.
hot

y a
N.
res
ck
ha-
lier
e

ory
re
or
cts
is
ad

ck
sts
y
ns-
The rest of this paper is organized as follows: Section 2
contains a brief overview of the Real Application Cluster
architecture. Section 3 describes Cache Fusion protocols,
highlighting techniques for read-sharing, write-sharing, as
well as efficient inter-node messaging. Section 4 briefly
discusses RAC mechanisms for Decision Support work-
loads. Section 5 describes recovery mechanisms with
Cache Fusion. Finally, Section 6 concludes.

2. Overview of Real Application Clusters

An Oracle Instance is a collection of processes and mem-
ory accessing a shared set of data files (see Figure 1
below). Each Oracle instance inside RAC has its own pri-
vate set of log files referred to as aRedo Thread. Each
instance also has its own buffer cache of disk buffers, and
taken together, these local caches form a global buffer
cache. In order to maintain cache coherency in this global
cache, global resource control is needed. We call this
resource control mechanism theGlobal Cache Service
(GCS). For additional details on RAC and GCS, see [3].

The GCS tracks and maintains the locations and access
modes of all cache resources (data blocks) in the global
cache. It synchronizes global cache accesses, allowing
only one instance at a time to modify a cache resource.

The GCS adopts a distributed architecture. Each instance
shares the responsibility of managing a subset of the glo-
bal cache. There are several advantages to this approach.
First, the work of handling cache resource requests can be
evenly divided among all existing database instances. Sec-
ond, in case of hardware or software failure in a node, only
the instance running on the failed node is affected. Access
to cache resources managed by this instance may be tem-
porarily unavailable. However, all other resources will
continue to be accessible.

The assignment of global resources to a particular instance
takes into account the access pattern of cache resources.

Resources accessed most frequently by an instance wil
likely to be managed by the same instance.

By knowing the global view of all data blocks, GCS ca
direct a read or write request to the instance that can b
serve it. For example, suppose an instance issues an u
tee request for a particular block to the GCS. The GC
will then forward the request to the instance which has t
current cached buffer for that block. This current holde
will transfer the cache buffer to the requester instan
directly, and the GCS will then update the holder informa
tion to reflect the fact that the requesting instance is no
the holder.

3. Cache Fusion

Cache fusion refers to the protocol for sharing of instan
buffer cache contents through fast inter-node messagi
resulting in a cluster-wide global buffer cache. There a
two types of sharing involved:Read-Sharing, which refers
to the mechanism used by a query to access the content
another instance’s buffer cache, andWrite-Sharingwhich
refers to the mechanism by which an update operati
accesses data in another instance’s cache. In the follow
subsections, we describe both kinds of sharing, follow
by a brief description of inter-node messaging.

3.1 Cache Fusion Read-Sharing

The mechanism for read-sharing in Cache Fusion explo
Oracle’s Consistent Read(CR) mechanism [1]. CR is a
version-based concurrency control protocol which allow
transactions to perform reads without acquiring any lock
Each transaction in Oracle is associated with a snaps
time, known as theSystem Change Number(SCN), and
the CR mechanism guarantees that any data read b
transaction is transactionally consistent as of that SC
When a transaction performs a change to a block, it sto
the information required to undo that change in a rollba
segment. When a transaction reads a block, the CR mec
nism uses the stored undo information to create an ear
version of the block (a clone) which is consistent as of th
reading transaction’s SCN. Clones are created in-mem
and are never written to disk. A read operation therefo
never needs to wait for another transaction to commit
abort since the CR mechanism automatically reconstru
the version of the block required by the operation. Th
mechanism therefore allows high concurrency for re
operations.

In RAC, when Instance A requires read access to a blo
that is present in the buffer cache in Instance B, it reque
a copy of the block from Instance B without requiring an
change of resource ownership. Instance B creates a tra

server and system

buffer cache

instance 2 instance N

instance 1

shared datafiles

redo

processes

Figure 1: Oracle Instances in RAC

thread

Fast Inter Node Messaging

Os
e
ffi-
ors
g,

d-
ted
r-
de
er-
n
e

ed
er
,
of
t is

es
e

er
ic

at
ks
-
e,
ne
-

cal
s

lier
a-
rt
es.
to

to
of

hen
a
to
actionally consistent CR clone of the block and ships it
back to Instance A across the interconnect. Doing so has
no impact on processes on Instance B since ownership of
the block by Instance B is not affected.

Only when the requested block is not present in any
instance’s cache is a disk I/O performed for the block.
However, the Read-Sharing protocol guarantees that once
a block is read from disk by any instance in RAC, subse-
quent read accesses to that block from any other instance
do not require disk I/O or inter-node ownership changes.

3.2 Cache Fusion Write-Sharing

Write-sharing is handled by the GCS. When Instance A
wishes to update a block it invokes the GCS to perform the
necessary cache-coherency messaging to obtain a copy of
the block.

If the GCS determines that the block is already in another
instance (B’s) buffer cache, it notifies instance B that it
must release its ownership of the block. Instance B then
saves a copy of the block in its cache for future read access
and releases ownership. Along with the message acknowl-
edging the release, Instance B also ships its cached copy of
the block to the requesting instance, even if that copy is
dirty (i.e. contains changes that have not been written to
disk). Thus, sharing dirty buffers between instances does
not require any extra disk writes and reads.

Only if the block is not already present in any instance’s
buffer cache must the requesting instance issue a disk read
for the block.

An important benefit of the write-sharing fusion protocol
is that after a write request is performed for a block, the
instance that had the current copy can continue to perform
read accesses on the block. Thus, in the above example,
Instance B can continue to perform read accesses on its
cached image of the block even after it has relinquished
ownership of the block and sent a copy over to Instance A.
This is in contrast with typical shared-disk protocols in
which a write request by a node invalidates all cached cop-
ies and prevents any other nodes from accessing that block
for the duration of the write.

Cache Fusion Read-Sharing and Write-sharing therefore
ensure that in RAC, the total number of disk I/Os that need
to be performed is comparable to the number of I/Os that
would be performed by the same workload running on a
single instance of Oracle with a buffer cache equal to the
sum of the buffer caches of all the constituent RAC
instances.

3.3 Efficient inter-node messaging

The protocols described so far reduce the number of I/
required for inter-node data-sharing. Also critical to th
scalability and efficiency of a clustered database is the e
ciency of inter-node messaging. There are three fact
that contribute to the efficiency of inter-node messagin
these are discussed below:

• Latency of inter-node messaging:Cache Fusion is
essentially a large state machine, and uses fixe
length, fixed-format messages which can be genera
and interpreted very efficiently, as opposed to highe
level SQL messages which are an order of magnitu
more expensive to generate and interpret. Furth
more, exploiting high-performance communicatio
substrates like VIA implies that on-the-wire messag
transmission times are minimal.

• Number of nodes involved in servicing a request:
With Cache Fusion, at most three nodes are involv
in any block request: the requesting node, the own
of the directory information for the block requested
and the holder node. This means that the number
nodes and messages required to service a reques
constant and does not grow with the number of nod
in the cluster, allowing a RAC cluster to scale to larg
numbers of nodes.

• Frequency of inter-node synchronization events:
The GCS has been designed to minimize the numb
of such events through an adaptive and dynam
directory migration mechanism: the instance th
most frequently accesses a particular set of bloc
will eventually end up owning the directory informa
tion associated with those blocks. Thus, over tim
any instance-locality patterns are observed to affi
directory information to the instances that most fre
quently access the corresponding resources. Lo
ownership of directory information greatly reduce
the number of inter-node events in the cluster.

4. RAC support for DSS workloads

The Cache Fusion sharing protocols described ear
facilitate fast fine-grained data sharing for OLTP applic
tions. RAC also benefits high-bandwidth Decision Suppo
workloads through parallel execution across cluster nod
Oracle’s cluster-aware cost-based optimizer takes in
account cluster topology, such as any affinity of disks
nodes, the storage parallelism for a table, the number
nodes and the number of cpus on each node, etc. w
computing an appropriate parallel execution plan for
query. The parallel execution engine also takes in

he
ing
ion
k

its
et-
g.

is-
lus-
s.
ra-
us-
rs

ng
of

ion

ny
-
r-
e
f

account the relative cost of remote vs local execution when
assigning parallel slaves to a query, preferentially allocat-
ing local query slaves for a query whenever possible.

A powerful mechanism for reducing the cost of remote
parallel execution isFunction Shipping, a mechanism tra-
ditionally employed only in Shared-Nothing systems.
With Function Shipping, parallel execution servers are
sent modified SQL queries to indicate the work that needs
to be performed. Function Shipping requires far fewer
messages to be interchanged than the more typicalData-
Shipping approach for shared-disk systems.

5. Recovery in a RAC environment

While Cache Fusion provides a high-performance cluster-
database architecture for both OLTP and DSS operations,
it also facilitates high-performance for recovery in the
event of instance failure. The RAC architecture guarantees
availability of the database as long as at least one instance
is alive. Recovery cost in a RAC environment is also
designed to be proportional to the number of failures, not
the total number of nodes in the cluster since only redo
logs from failed nodes are read and applied. The key
advantage provided by Cache Fusion is that disk reads for
recovery are eliminated for blocks that are present in a sur-
viving node’s cache, thus speeding up recovery.

Global Cache Resources can be made available as soon as
the set of blocks needing recovery has been identified fol-
lowing a scan of the redo log. Cluster availability can
therefore occur well before application of redo to the
recovery set begins.

Parallel recovery mechanisms exist to make use of all sur-
viving nodes, particularly in the case of large numbers of
instance failures. This provides the benefit of parallelizing
disk I/Os for log reads and data block reads across multi-
ple recovering instances and further reduces recovery
time.

6. Conclusions

In this paper, we have briefly described Oracle’s Cac
Fusion architecture, a shared-cache approach to build
clustered databases for shared-disk clusters. Cache Fus
allows off-the-shelf applications to run on shared-dis
clusters with no changes. This architecture explo
advances in hardware cluster technology by using the n
work rather than the disk as the medium for data sharin
Multi-versioning read-sharing protocols based on Cons
tent-Read allow queries to access cached data in the c
ter without requiring inter-node coherency operation
Cache Fusion write-sharing protocols allow update ope
tions to operate on buffers shipped directly across the cl
ter interconnect from other instances, even if those buffe
contain unwritten changes. Efficient inter-node messagi
allows a Cache Fusion cluster to scale to large numbers
nodes. A cluster-aware cost-based optimizer and Funct
Shipping allow large DSS workloads to fully exploit the
processing capabilities of the cluster, again without a
user-level knowledge of cluster topology or application
level optimizations. Cache Fusion also improves the pe
formance of recovery in the event of any failures in th
cluster by allowing recovery to utilize cached copies o
blocks requiring recovery.

References

[1] W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza,
and N. Macnaughton. The Oracle Universal Server
Buffer Manager. InProceedings of the Twenty-Third
International Conference on Very Large Databases,
Athens, Greece, September 1997.

[2] Infiniband Trade Association,http://www. infini-
bandta.org.

[3] Oracle Corporation.Oracle9i Real Application Clus-
ters Concepts Release 1 (9.0.1), Part Number
A89867-01.

[4] Virtual Inteface Architecture,http://www.viaarch.org.

	1. Introduction
	2. Overview of Real Application Clusters
	3. Cache Fusion
	3.1 Cache Fusion Read-Sharing
	3.2 Cache Fusion Write-Sharing
	3.3 Efficient inter-node messaging

	4. RAC support for DSS workloads
	5. Recovery in a RAC environment
	6. Conclusions

