1.

Cache Fusion: Extending Shared-Disk Clusters with Shared Caches

Tirthankar Lahiri, Vinay Srihari, Wilson Chan, Neil Macnaughton, Sashikanth Chandrasekaran

Oracle Corporation

Abstract

Cache Fusio™ is a fundamental component of
Oracle’s Real Application Cluster configuration,
a shared-cache clustered-database architecture
that transparently extends database applications
from single systems to multi-node shared-disk
clusters. In classic shared-disk implementations,
the disk is the medium for data sharing and data
blocks are shipped between nodes through disk
writes and reads under the arbitration of a distrib-
uted lock manager. Cache Fusion extends this
capability of a shared-disk architecture by allow-
ing nodes to share the contents of their volatile
buffer caches through the cluster interconnect.
Using Cache Fusion, data blocks are shipped
directly from one node to another using intercon-
nect messaging, eliminating the need for extra
disk 1/Os to facilitate data sharing. Cache Fusion
thus greatly improves the performance and scal-
ability characteristics of shared-disk clusters
while continuing to preserve the availability ben-
efits of shared-disk architectures.

Introduction

{tirthankar.lahiri, vinay.srihari, wilson.chan, neil. macnaughton, sashikanth.chandrasekaran}@oracle.com

a shared-disk cluster, a form of cluster in which all nodes
have direct access to all disks. RAC is so called since it
transparently allows any database application to run on a
cluster without requiring any application changes. RAC
allows for improvements in application performance since
the application is executed in parallel across multiple sys-
tems, as well as improvements in availability, since the
application is available as long as at least one of the cluster
nodes is alive.

In a classic shared-disk clustered database, the disk is the
medium of data coherency across the cluster nodes. For
instance, if a node requires a copy of a block that is pres-
ently dirty in another node’s buffer cache, the second node
must first write the block to disk before the first node can
read the block.

However, recent advances in cluster hardware technology
merit a fresh approach to building clustered databases.
Storage Area Networks (SAN) now provide sophisticated
mechanisms for disk connectivity, circumventing the limi-
tations of directly attached disks by allowing each node to
be connected to a much larger number of disks. For exam-

ple, Infiniband>M[2] is an emerging standard for high-per-
formance clusters, and by using the same protocol for I/O
and inter-node messaging allows cluster networks that

A cluster is a group of independent servers that cooperalgyry poth data and cluster interconnect messages. Other
as a single system. The key components of a cluster are thgq_herformance commodity interconnect standards such
constituent server nodes, the m_terc_onnect, and the disko\jrtual Interface ArchitecturéVIA)[4] now allow ven-
subsystem. The OraclReal Application Cluste(RAC) qors to build high-performance clusters from standard
architecture is a clustered database architecture running ¥dmponents. These advances mean that clusters are now
becoming mainstream, capable of high data volumes and
Permission to copy without fee all or part of this material high data-transfer bandwidths.
is granted provided that the copies are not made or dis-
tributed for direct commercial advantage, the VLDB Cache Fusion exploits these advances in clustering tech-
copyright notice and the title of the publication and its nology by using the network rather than the disk as the
date appear, and notice is given that copying is by per- medium for data sharing between nodes. With the Cache
mission of the Very Large Data Base Endowment. ToFusion protocol, blocks can be shipped directly between
copy otherwise, or to republish, requires a fee and/or Oracle Instances through fast inter-node messaging, with-
special permission from the Endowment. out requiring expensive disk I/O. Oracle instances there-
Proceedings of the 27th VLDB Conference, fore directly share the contents of their volatile buffer
Roma, Italy 2001 caches, resulting in &hared-cacheclustered database
architecture.

The rest of this paper is organized as follows: Section ZResources accessed most frequently by an instance will be

contains a brief overview of the Real Application Cluster likely to be managed by the same instance.

architecture. Section 3 describes Cache Fusion protocols,

highlighting techniques for read-sharing, write-sharing, aBBy knowing the global view of all data blocks, GCS can

well as efficient inter-node messaging. Section 4 brieflydirect a read or write request to the instance that can best

discusses RAC mechanisms for Decision Support workserve it. For example, suppose an instance issues an upda-

loads. Section 5 describes recovery mechanisms withee request for a particular block to the GCS. The GCS

Cache Fusion. Finally, Section 6 concludes. will then forward the request to the instance which has the

current cached buffer for that block. This current holder

will transfer the cache buffer to the requester instance

. . directly, and the GCS will then update the holder informa-

An Oracle I_nstance is a collection of processes ano_l MeMon to reflect the fact that the requesting instance is now

ory accessing a shared set of data files (see Figure rLe holder.

below). Each Oracle instance inside RAC has its own pri-

vate set of log files referred to asRedo ThreadEach

instance also has its own buffer cache of disk buffers, an@. Cache Fusion

taken together, these local caches form a global buffer

cache. In order to maintain cache coherency in this globaCache fusion refers to the protocol for sharing of instance

cache, global resource control is needed. We call thibuffer cache contents through fast inter-node messaging,

resource control mechanism ti@lobal Cache Service resulting in a cluster-wide global buffer cache. There are

(GCS). For additional details on RAC and GCS, see [3]. two types of sharing involvedRead-Sharingwhich refers
instance 1 to the mechanism used by a query to access the contents of

2. Overview of Real Application Clusters

server and system East Inter Node Messadin another instance’s buffer cache, ahttite-Sharingwhich
processes . : gng refers to the mechanism by which an update operation
accesses data in another instance’s cache. In the following
subsections, we describe both kinds of sharing, followed
VT " - by a brief description of inter-node messaging.
7 % instance P . instance N
T ~ AY . 3.1 Cache Fusion Read-Sharing
= I_
redo The mechanism for read-sharing in Cache Fusion exploits
thread Oracle’s Consistent ReadCR) mechanism [1]. CR is a

version-based concurrency control protocol which allows
transactions to perform reads without acquiring any locks.
Figure 1: Oracle Instances in RAC Each transaction in Oracle is associated with a snapshot
time, known as the&system Change Numb&CN), and

o . the CR mechanism guarantees that any data read by a
The GCS tracks and maintains the locations and acce ansaction is transactionally consistent as of that SCN.

modes of all cache resources (data blocks) in the gIOba\Nhen a transaction performs a change to a block, it stores

cache. L yrivrizes bl cach accesss, alowr 510 T PO S 0 800k 20
y " segment. When a transaction reads a block, the CR mecha-

L : . nism uses the stored undo information to create an earlier
The GCS adopts a_d!s_trlbuted archltecture. Each InStanC\?ersion of the block (a clone) which is consistent as of the
shares the responsibility of managing a subset_ of the glor'eading transaction’s SCN. Clones are created in-memory
b_aI cache. There are s_everal advantages to this approacil,y are never written to disk. A read operation therefore
First, the_ v_vork of handling c_ac_he resource r_equests can br?ever needs to wait for another transaction to commit or
evenl_y divided among all existing datab_ase !nstances. Se%fbort since the CR mechanism automatically reconstructs
ond, in case of hardware or software failure in a node, onl

Yhe version of the block required by the operation. This

. Mechanism therefore allows high concurrency for read
to cache resources managed by this instance may be tem- 9 Y

) X .- operations.
porarily unavailable. However, all other resources will P
continue to be accessible.

shared datafiles

In RAC, when Instance A requires read access to a block

The assignment of global resources to a particular instancthat Is presentin the buffer cache in Instance B, it requests
>S19) P gcopy of the block from Instance B without requiring any
takes into account the access pattern of cache resourc

es. .
c%ange of resource ownership. Instance B creates a trans-

actionally consistent CR clone of the block and ships it3.3 Efficient inter-node messaging

back to Instance A across the interconnect. Doing so has

no impact on processes on Instance B since ownership dfhe protocols described so far reduce the number of 1/0Os

the block by Instance B is not affected. required for inter-node data-sharing. Also critical to the
scalability and efficiency of a clustered database is the effi-

Only when the requested block is not present in anyciency of inter-node messaging. There are three factors

instance’s cache is a disk /O performed for the block.that contribute to the efficiency of inter-node messaging,

However, the Read-Sharing protocol guarantees that ona@ese are discussed below:

a block is read from disk by any instance in RAC, subse-
quent read accesses to that block from any other instance
do not require disk I/O or inter-node ownership changes.

3.2 Cache Fusion Write-Sharing

Write-sharing is handled by the GCS. When Instance A
wishes to update a block it invokes the GCS to perform the
necessary cache-coherency messaging to obtain a copy of
the block.

If the GCS determines that the block is already in anotheF
instance (B’s) buffer cache, it notifies instance B that it
must release its ownership of the block. Instance B then
saves a copy of the block in its cache for future read access
and releases ownership. Along with the message acknowl-
edging the release, Instance B also ships its cached copy of
the block to the requesting instance, even if that copy is
dirty (i.e. contains changes that have not been written to
disk). Thus, sharing dirty buffers between instances does
not require any extra disk writes and reads. .
Only if the block is not already present in any instance’s
buffer cache must the requesting instance issue a disk read
for the block.

An important benefit of the write-sharing fusion protocol
is that after a write request is performed for a block, the
instance that had the current copy can continue to perform
read accesses on the block. Thus, in the above example,
Instance B can continue to perform read accesses on its
cached image of the block even after it has relinquished
ownership of the block and sent a copy over to Instance A.
This is in contrast with typical shared-disk protocols in
which a write request by a node invalidates all cached cop4.
ies and prevents any other nodes from accessing that block
for the duration of the write.

Latency of inter-node messaging:Cache Fusion is
essentially a large state machine, and uses fixed-
length, fixed-format messages which can be generated
and interpreted very efficiently, as opposed to higher-
level SQL messages which are an order of magnitude
more expensive to generate and interpret. Further-
more, exploiting high-performance communication
substrates like VIA implies that on-the-wire message
transmission times are minimal.

Number of nodes involved in servicing a request:
With Cache Fusion, at most three nodes are involved
in any block request: the requesting node, the owner
of the directory information for the block requested,
and the holder node. This means that the number of
nodes and messages required to service a request is
constant and does not grow with the number of nodes
in the cluster, allowing a RAC cluster to scale to large
numbers of nodes.

Frequency of inter-node synchronization events:
The GCS has been designed to minimize the number
of such events through an adaptive and dynamic
directory migration mechanism: the instance that
most frequently accesses a particular set of blocks
will eventually end up owning the directory informa-
tion associated with those blocks. Thus, over time,
any instance-locality patterns are observed to affine
directory information to the instances that most fre-
quently access the corresponding resources. Local
ownership of directory information greatly reduces
the number of inter-node events in the cluster.

RAC support for DSS workloads

The Cache Fusion sharing protocols described earlier

facilitate fast fine-grained data sharing for OLTP applica-

Cache Fusion Read-Sharing and Write-sharing thereforgons. RAC also benefits high-bandwidth Decision Support
ensure that in RAC, the total number of disk 1/0s that needvorkloads through parallel execution across cluster nodes.
to be performed is comparable to the number of 1/0s thaDracle’s cluster-aware cost-based optimizer takes into
would be performed by the same workload running on aaccount cluster topology, such as any affinity of disks to
single instance of Oracle with a buffer cache equal to thenodes, the storage parallelism for a table, the number of
sum of the buffer caches of all the constituent RACnodes and the number of cpus on each node, etc. when
instances. computing an appropriate parallel execution plan for a
query. The parallel execution engine also takes into

account the relative cost of remote vs local execution wher, Conclusions
assigning parallel slaves to a query, preferentially allocat-
ing local query slaves for a query whenever possible. In this paper, we have briefly described Oracle’s Cache
Fusion architecture, a shared-cache approach to building
A powerful mechanism for reducing the cost of remoteclustered databases for shared-disk clusters. Cache Fusion
parallel execution ig-unction Shippinga mechanism tra- allows off-the-shelf applications to run on shared-disk
ditionally employed only in Shared-Nothing systems.clusters with no changes. This architecture exploits
With Function Shipping, parallel execution servers areadvances in hardware cluster technology by using the net-
sent modified SQL queries to indicate the work that needsvork rather than the disk as the medium for data sharing.
to be performed. Function Shipping requires far fewerMulti-versioning read-sharing protocols based on Consis-
messages to be interchanged than the more typlatd- tent-Read allow queries to access cached data in the clus-
Shippingapproach for shared-disk systems. ter without requiring inter-node coherency operations.
. . Cache Fusion write-sharing protocols allow update opera-
5. Recovery in a RAC environment tions to operate on buffers shipped directly across the clus-
. . . : ter interconnect from other instances, even if those buffers
While Cache Fusion provides a high-performance cluster- : . N)
. . contain unwritten changes. Efficient inter-node messaging
database architecture for both OLTP and DSS operations, .
) . . . dllows a Cache Fusion cluster to scale to large numbers of
it also facilitates high-performance for recovery in the L :
nodes. A cluster-aware cost-based optimizer and Function

availability of the database as long as at least one instancéehIIOIOIng allow large DSS workloads to fully exploit the

is alive. Recovery cost in a RAC environment is alsoprocessing capabilities of the cluster, again without any

designed to be proportional to the number of failures, nofjser-leve_l I_<n0_/vledge of cluste_r topolog_y or application-
. . evel optimizations. Cache Fusion also improves the per-
the total number of nodes in the cluster since only red

logs from failed nodes are read and applied. The ke(j/‘ormance of recovery in the even'; .Of any failures in the
. o . cluster by allowing recovery to utilize cached copies of
advantage provided by Cache Fusion is that disk reads fqr s
e ; locks requiring recovery.
recovery are eliminated for blocks that are present in a sur-

viving node’s cache, thus speeding up recovery.

Global Cache Resources can be made available as soon Iggferences
the set of blocks needing recovery has been identified fol- . . _ N .
lowing a scan of the redo log. Cluster availability can[1] W.Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza,

Pt and N. Macnaughton. The Oracle Universal Server
therefore occur _weII before application of redo to the Buffer Manager, IrProceedings of the Twenty-Third
recovery set begins.

International Conference on Very Large Databases
Athens, Greece, September 1997.

Parallel recovery mechanisms exist to make use of all sur-
viving nodes, particularly in the case of large humbers 01{2]
instance failures. This provides the benefit of parallelizing
disk 1/0s for log reads and data block reads across multil3] Oracle CorporationOracle9i Real Application Clus-
ple recovering instances and further reduces recovery €IS Concepts Release 1 (9.0 Bart Number

fime. A89867-01.

[4] Virtual Inteface Architecturehttp://www.viaarch.org.

Infiniband Trade Associatiomttp://www. infini-
bandta.org

	1. Introduction
	2. Overview of Real Application Clusters
	3. Cache Fusion
	3.1 Cache Fusion Read-Sharing
	3.2 Cache Fusion Write-Sharing
	3.3 Efficient inter-node messaging

	4. RAC support for DSS workloads
	5. Recovery in a RAC environment
	6. Conclusions

